文章前瞻:优质数据集与检测系统精选

点击链接:更多数据集与系统目录清单

数据集与检测系统 数据集与检测系统
基于深度学习的道路积水检测系统 基于深度学习的道路垃圾检测系统
基于深度学习的道路裂缝检测系统 基于深度学习的道路交通事故检测系统
基于深度学习的道路病害检测系统 基于深度学习的道路积雪结冰检测系统
基于深度学习的汽车车牌检测系统 基于深度学习的井盖丢失破损检测系统
基于深度学习的行人车辆检测系统 基于深度学习的航拍行人检测系统
基于深度学习的车辆分类检测系统 基于深度学习的电动车头盔佩戴检测系统
基于深度学习的交通信号灯检测系统 基于深度学习的共享单车违停检测系统
基于深度学习的摆摊占道经营检测系统 基于深度学习的人员游泳溺水检测系统
基于深度学习的航拍水面垃圾检测系统 基于深度学习的水面垃圾检测系统
基于深度学习的水面船舶分类检测系统 基于深度学习的海洋垃圾检测系统
基于深度学习的救生衣穿戴检测系统 基于深度学习的海洋生物检测系统
基于深度学习的人员吸烟检测系统 基于深度学习的口罩佩戴检测系统
基于深度学习的烟雾和火灾检测系统 基于深度学习的人员睡岗玩手机检测系统
基于深度学习的人员摔倒检测系统 基于深度学习的人员姿势检测系统(站坐躺摔倒)
基于深度学习的工地安全穿戴检测系统 基于深度学习的安全帽检测系统
基于深度学习的反光背心穿戴检测系统 基于深度学习的吸烟玩手机行为检测系统
基于深度学习的工地挖掘机检测系统 基于深度学习的工地工程车检测系统
基于深度学习的人体手势检测系统 基于深度学习的消防灭火器检测系统
基于深度学习的人员高空作业检测系统 基于深度学习的水果分类检测系统
基于深度学习的农作物病害检测系统 基于深度学习的水稻病害检测系统
基于深度学习的害虫检测系统 基于深度学习的蓝莓成熟度检测系统
基于深度学习的草莓成熟度检测系统 基于深度学习的食品分类检测系统
基于深度学习的光伏板缺陷检测系统 基于深度学习的航拍光伏板检测系统
基于深度学习的建筑垃圾废料检测系统 基于深度学习的可回收/不可回收垃圾检测系统
基于深度学习的垃圾分类检测系统 基于深度学习的猪只行为动作检测系统
基于深度学习的动物分类检测系统 基于深度学习的明厨亮灶鼠患检测系统
基于深度学习的猫狗分类检测系统 基于深度学习的服饰分类检测系统
基于深度学习的电动车进电梯检测系统 基于深度学习的无人机设备检测系统
基于深度学习的树木倒塌检测系统 基于深度学习的电线杆杂物检测系统
基于深度学习的航拍树木检测系统 基于深度学习的学生课堂行为检测系统
基于深度学习的家具分类检测系统 基于深度学习的武器刀具检测系统

一、数据集介绍

【数据集】害虫分类识别数据集 3472 张,目标检测,包含YOLO/VOC格式标注

数据集中包含 8 种分类,具体分类为:names: ['Centipedes', 'Cockroaches', 'House-centipedes', 'Larvas', 'Moth-flies', 'Stink-Bugs', 'house-moths', 'spiders']
,分别为蜈蚣、蟑螂、蝗虫、叶片上的幼虫、潮虫、臭虫、飞蛾、蜘蛛。

数据集图片来自国内外网站、网络爬虫等;

可用于农作物害虫检测

检测场景为农田环境、食品工厂环境等,可以应用于农业害虫检测的自动化与智能化等。

文章底部名片或主页私信获取数据集~

  ​​​​​

1、数据概述

害虫分类识别的重要性

全球每年因病虫害导致的农作物减产高达20%-40%,经济损失高达数千亿美元。传统人工检测依赖肉眼观察和经验判断,存在效率低、准确性不足、覆盖面有限等问题。例如,在复杂农田环境中,人工巡查难以发现隐蔽或微小害虫,且不同个体对病虫害的判断标准存在差异,导致防治措施滞后。此外,传统方法无法满足大规模农田的实时监测需求,亟需自动化、智能化的解决方案。

基于YOLO的害虫识别算法

  1. 实时性与高效性:YOLO算法将目标检测转化为回归问题,通过单次CNN运算即可完成目标定位和分类,适合实时处理农业场景中的害虫检测任务。例如,YOLOv8在处理高密度害虫和小目标检测时表现出色,能够快速识别图像中的害虫。

  2. 多尺度特征融合:YOLO算法通过多尺度特征融合策略,捕捉不同尺度的害虫特征,提高对小型和密集害虫的检测能力。例如,YOLOv7通过信息聚集-分发机制和感受野增强模块,显著提升了小尺度害虫的识别率。

  3. 模型轻量化与部署灵活性:YOLO系列算法提供不同版本的模型(如YOLOv8n、YOLOv5s),可在移动设备或边缘计算设备上部署,满足田间实时检测的需求。例如,基于PyQt5或PySide6开发的用户界面,支持图片、视频及摄像头输入,方便农民现场使用。

 该数据集含有 3472 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试农田环境、食品工厂环境等场景进行害虫分类识别。图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

2、数据集文件结构

pests/

——test/

————Annotations/

————images/

————labels/

——train/

————Annotations/

————images/

————labels/

——valid/

————Annotations/

————images/

————labels/

——data.yaml

  • 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含作物害虫识别的目标分类和加载路径。

​​​​​​​​ 

​  ​​​​​​​​​​​​​

​​Annotations目录下的xml文件内容如下:

<annotation>
	<folder></folder>
	<filename>Larvas_191_jpg.rf.1cc8d76ea2eec638556cf8903d76d2f6.jpg</filename>
	<path>Larvas_191_jpg.rf.1cc8d76ea2eec638556cf8903d76d2f6.jpg</path>
	<source>
		<database>roboflow.com</database>
	</source>
	<size>
		<width>640</width>
		<height>640</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>Larvas</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>66</xmin>
			<xmax>576</xmax>
			<ymin>150</ymin>
			<ymax>552</ymax>
		</bndbox>
	</object>
</annotation>

3、数据集适用范围 

  • 目标检测场景,监控摄像头识别
  • yolo训练模型或其他模型
  • 农田环境、食品工厂环境等场景
  • 可以用于农业害虫检测的自动化与智能化等。

4、数据集标注结果 

​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​  ​​​​​​ ​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​  ​​​​

​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​  ​​​​ ​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​  ​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​​​​​​  ​​​​​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​​  ​​​​​

4.1、数据集内容 

  1. 多角度场景:监控摄像头视角;
  2. 标注内容:8个分类,['Centipedes', 'Cockroaches', 'House-centipedes', 'Larvas', 'Moth-flies', 'Stink-Bugs', 'house-moths', 'spiders'];
  3. 图片总量:3472 张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

5、训练过程

5.1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

​​​​​​​

5.2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import random

trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

5.3、数据集格式化处理

在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['Centipedes', 'Cockroaches', 'House-centipedes', 'Larvas', 'Moth-flies', 'Stink-Bugs', 'house-moths', 'spiders']
 # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

5.4、修改数据集配置文件

在ultralytics-main目录下创建一个wheat.yaml文件

train: data/train.txt
val: data/val.txt
test: data/test.txt

nc: 8
names: ['Centipedes', 'Cockroaches', 'House-centipedes', 'Larvas', 'Moth-flies', 'Stink-Bugs', 'house-moths', 'spiders']

5.5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='wheat.yaml', epochs=200, imgsz=640, batch=16, workers=0, device=0)

也可以在终端执行下述命令:

yolo train data=wheat.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

5.6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径

# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) 

# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        # results = model(frame)
        results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)

        results[0].names[0] = "道路积水"
        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Write the annotated frame to the output file
        out.write(annotated_frame)

        # Display the annotated frame (optional)
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

6、获取数据集 

文章底部名片或主页私信获取数据集~

二、基于QT的目标检测可视化界面

1、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

2、使用说明

​​​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区
  • 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值自定义检测区的置信度阈值,可以通过滑动条的方式设置
  • 文件上传:选择目标文件,包含JPG格式和MP4格式
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 3、预测效果展示

3.1、图片检测

​​​​

切换置信度再次执行:

​​​​

上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。

3.2、视频检测 

​​​​

3.3、日志文本框

​​​​​​​

4、前端代码 

class MyWindow(QtWidgets.QMainWindow):
    def __init__(self):
        super().__init__()

        self.init_gui()
        self.model = None
        self.timer = QtCore.QTimer()
        self.timer1 = QtCore.QTimer()
        self.cap = None
        self.video = None
        self.file_path = None
        self.base_name = None
        self.timer1.timeout.connect(self.video_show)

    def init_gui(self):
        self.folder_path = "model_file"  # 自定义修改:设置文件夹路径
        self.setFixedSize(1300, 650)
        self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称
        self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标
        central_widget = QtWidgets.QWidget(self)
        self.setCentralWidget(central_widget)
        main_layout = QtWidgets.QVBoxLayout(central_widget)

        # 界面上半部分: 视频框
        topLayout = QtWidgets.QHBoxLayout()
        self.oriVideoLabel = QtWidgets.QLabel(self)
        
        # 界面下半部分: 输出框 和 按钮
        groupBox = QtWidgets.QGroupBox(self)
        groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')
        bottomLayout = QtWidgets.QHBoxLayout(groupBox)
        main_layout.addWidget(groupBox)
        btnLayout = QtWidgets.QHBoxLayout()
        btn1Layout = QtWidgets.QVBoxLayout()
        btn2Layout = QtWidgets.QVBoxLayout()
        btn3Layout = QtWidgets.QVBoxLayout()

        # 创建日志打印文本框
        self.outputField = QtWidgets.QTextBrowser()
        self.outputField.setFixedSize(530, 180)
        self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')
        self.detectlabel = QtWidgets.QLabel(self)
        self.oriVideoLabel.setFixedSize(530, 400)
        self.detectlabel.setFixedSize(530, 400)
        self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')
        self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')
        topLayout.addWidget(self.oriVideoLabel)
        topLayout.addWidget(self.detectlabel)
        main_layout.addLayout(topLayout)

5、代码获取

YOLO可视化界面

 更多数据集请查看置顶博文!

以上内容均为原创,搬运请私信。

更多推荐