deepseek本地部署最简教程——搭建个人AI知识库
在上一篇推送中([deepseek本地部署最简教程]),我们介绍了基于Ollama的本地部署。尽管本地化部署的DeepSeek模型在算力规模和功能完备性上无法媲美云端全量版本,但只要喂给它「独家秘方」——也就是你电脑里的文档、代码、笔记这些干货,它立马就能变身成你的专属知识小助手!当然,AnythingLLM还具备其他功能,如代码托管和官方API的接入等,受篇幅所限,本文不再展开论述,各位可自行探
1简介
在上一篇推送中([deepseek本地部署最简教程]),我们介绍了基于Ollama的本地部署。尽管本地化部署的DeepSeek模型在算力规模和功能完备性上无法媲美云端全量版本,但只要喂给它「独家秘方」——也就是你电脑里的文档、代码、笔记这些干货,它立马就能变身成你的专属知识小助手!
2准备
自己从头搭建个人知识库就像手工造汽车——理论可行但太费劲。这里推荐一个「懒人神器」:AnythingLLM。它能帮你把电脑里的文档(PDF/Word/代码文件都行)变成会聊天的知识库,操作就像把文件拖进文件夹一样简单!
用这个工具你可以:
✅ 随时提问:比如“上周写的Verilog代码在哪?”直接对话就能找到;写RTL代码卡壳时,它能秒查你去年写的相似案例;面对几十份会议纪要,直接问它就能提取关键结论。
✅ 保护隐私:所有资料都存在自己电脑里,不怕泄露
✅ 跨格式支持:无论是技术文档、会议记录还是代码片段都能处理
整个过程只需要三步:
把文件拖进软件
等它自动分析(喝杯咖啡的时间)
开始用自然语言提问
相当于给你的电脑配了个24小时待命的资料管家,特别适合经常需要查旧文档的技术人员!
3下载AnythingLLM
以下是下载链接(安装包也可在附录A获取):
https://anythingllm.com/desktop

使用管理员模式安装


4配置
先确保ollama是开启状态,然后搜索ollama

选择deepseek模型
在 AnythingLLM 的本地部署配置中,MAX Token(最大令牌数) 是一个关键参数,主要用于控制语言模型(LLM)处理文本时的输入和输出长度限制。
语言模型(如 GPT)单次处理的文本长度受硬件和算法限制。MAX Token 决定了模型单次请求能处理的 输入+输出 的 Token 总数上限。超过此值会导致截断或报错。
Token 并非严格等于单词或汉字。例如,英文中 1 Token ≈ 4 字符,中文中 1 汉字 ≈ 2-3 Token
在问答或生成场景中,该参数直接影响 AI 生成回答的最大长度。例如设置为 512,则回答内容会被限制在约 512 个 Token(约 380 个汉字或 700 英文单词)。

点击下一步

填写自己的邮箱

填写工作区名称

设置中文


上传文档


将文档放到工作区

保存

更新中

更新成功

4测试结果
可以看到deepseek可以理解文档中的内容


5写在最后
当然,AnythingLLM还具备其他功能,如代码托管和官方API的接入等,受篇幅所限,本文不再展开论述,各位可自行探索。需要注意的是,本地部署的AI回答精准度仍然受到硬件性能的制约。建议开发者参考以下硬件选型策略,轻量级部署:RTX 3060(12GB)+32GB DDR4+1TB SSD(支持7B参数模型实时推理);企业级方案:A100 80GB*4+NVLink+Optane持久内存(满足千亿级Token知识库毫秒响应)。

如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

更多推荐
所有评论(0)