简介: LLaMA-Factory 是一个国内北航开源的低代码大模型训练框架,专为大型语言模型(LLMs)的微调而设计

LLaMA-Factory:大语言模型微调框架

在这里插入图片描述

一、功能特点

LLaMA-Factory 是一个国内北航开源的低代码大模型训练框架,专为大型语言模型(LLMs)的微调而设计。其主要功能特点包括:

  1. 高效且低成本:能够高效且低成本地支持对100多个模型进行微调,简化了模型微调的过程。
  2. 易于访问和使用:提供了友好的用户界面,用户无需编写代码即可轻松定制和微调LLMs。
  3. 丰富的数据集选项:支持多个数据集选项,用户可以选择自带的数据集或自己生成数据集进行微调。
  4. 多样化的算法支持:集成了业界最广泛使用的微调方法和优化技术,如LoRA、GaLore、DoRA等。
  5. 实时监控和评估:支持集成TensorBoard、VanDB和MLflow等监控工具,便于实时监控训练过程和评估模型性能。
  6. 极速推理:提供了基于vLLM的OpenAI风格API、浏览器界面和命令行接口,实现快速推理。

二、安装

LLaMA-Factory 的安装相对简单,以下是一般的安装步骤(以conda环境为例):

  1. 创建Python环境
    使用conda创建一个新的Python环境,并安装必要的依赖库,如PyTorch等。

  2. 克隆LLaMA-Factory项目
    通过Git克隆LLaMA-Factory的源代码到本地。

    git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
    
  3. 安装依赖
    进入项目目录,安装必要的Python依赖库。

    
     cd LLaMA-Factory
     pip install -e ".[torch,metrics]"
    
  4. 启动服务
    在项目目录中运行python src/train_web.py启动服务,然后在浏览器中访问相应的端口(默认可能是7860)以访问训练界面。

在这里插入图片描述

三、支持的算法

LLaMA-Factory 支持多种先进的微调算法和模型,包括但不限于:

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
  • 多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
  • 先进算法:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

四、性能指标

与 ChatGLM 官方的 P-Tuning 微调相比,LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
在这里插入图片描述

GPU现存消耗:

在这里插入图片描述

五、微调例子

以下是一个使用LLaMA-Factory对Yuan2.0模型进行LoRA微调的例子:

  1. 准备数据集
    准备自定义的数据集,可以是JSON格式,包含指令、输入和输出等信息。
  2. 注册数据集
    在LLaMA-Factory的数据集管理文件中注册自定义的数据集。
  3. 启动Web UI服务
    运行python src/train_web.py启动Web UI服务,并在浏览器中打开相应的地址。
  4. 配置微调参数
    在Web界面上配置模型路径、微调方法(选择LoRA)、数据集等参数。
  5. 开始微调
    点击“开始”按钮开始微调过程,可以在界面中查看训练进度和损失函数等信息。
  6. 评估模型
    微调完成后,使用LLaMA-Factory提供的评估工具对模型进行评估,检查模型性能是否有所提升。

通过以上步骤,用户可以利用LLaMA-Factory轻松实现LLMs的微调,提升模型在特定任务上的性能。

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

更多推荐